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Abstract
Epithelial ovarian cancer (EOC) is the most lethal gynaecological malignancy in 
the western world. The majority of women presenting with the disease are 
asymptomatic and it has been dubbed the “silent killer”. To date there is no 
effective minimally invasive method of stratifying those with the disease or 
screening for the disease in the general population. Recent molecular and 
pathological discoveries, along with the advancement of scientific technology, 
means there is a real possibility of having disease-specific liquid biopsies available 
within the clinical environment in the near future. In this review we discuss these 
discoveries, particularly in relation to the most common and aggressive form of 
EOC, and their role in making this possibility a reality.
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Core Tip: Epithelial ovarian cancer (EOC), particularly high-grade serous carcinoma, is 
a gynaecological malignancy with a poor survival rate. Currently there is no effective 
disease-specific biomarker, which could improve detection rates and treatment 
algorithms, for any of the EOC types - this is an area of unmet clinical need. 
Circulating tumour DNA (ctDNA) analysis has emerged as a potential blood-based 
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“liquid biopsy” for early detection, diagnosis, staging and prognosis, monitoring 
response to treatment, monitoring minimal residual disease and relapse and identifying 
acquired drug resistance mechanisms. However, there are several obstacles to the 
development of cfDNA-based biomarkers which are discussed further in this in-depth 
review.
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INTRODUCTION
Epithelial ovarian cancer (EOC) is the most lethal gynaecological malignancy in the 
western world. In 2012 there were 152000 and 4300 deaths from ovarian cancer 
worldwide and in the United Kingdom, respectively[1]. This equates to twelve women 
dying from ovarian cancer within the United Kingdom every day.

The majority of women presenting with EOC are asymptomatic. In those women 
that do experience symptoms they are often vague and non-specific. The nature of the 
symptoms means that women generally present to their doctor with advanced stage 
disease. This has led to ovarian cancer being termed the “silent killer”. There have 
been major publicity campaigns, both regionally and nationally, involving the 
Department of Health and cancer charities to increase the level of awareness of ovarian 
cancer symptomatology; in an effort to improve earlier diagnosis.

EOC - FIVE DISTINCT DISEASES
There are five main types of EOC and these are included in the current World health 
Organization (WHO) classification: High-grade serous carcinoma (HGSC, 70%), 
endometrioid carcinoma (EC, 10%), clear cell carcinoma (CCC, 10%), mucinous 
carcinomas (MC, 3%), and low-grade serous carcinomas (LGSC, 3%)[2]. HGSC accounts 
for approximately 70% of all EOCs and approximately 90% of advanced stage EOCs 
(FIGO stage III-IV), making it the most common and most deadly.

The EOC types differ significantly morphologically, clinically, and at a molecular 
level. LGSC exhibit KRAS, BRAF, and ERBB2 mutations in around two thirds of cases 
whereas TP53 mutations are very rare in these tumours[3,4]. CTNNB1 (encoding β-
catenin) and PTEN mutations, along with microsatellite instability, are associated with 
low-grade ECs via specific signalling pathways[5,6]. MC display KRAS mutations in 
more than 50% of specimens and identical mutations have been elucidated in benign, 
borderline and malignant areas from the same neoplastic lesion suggesting that a 
KRAS mutation is an early event in mucinous tumour pathogenesis[7]. EC and CCC 
have been shown to be associated with endometriosis in the ovary or pelvis in 15% to 
70% of cases; this is almost certainly an underestimate since endometriosis may be 
overgrown by the tumour and it is likely that a large majority of EC and CCC arise in 
endometriosis[8,9]. In fact, there is recent evidence to show that long interspersed 
element-1 hypomethylation is an early molecular event involved in the transformation 
of EC and CCC from endometriosis[10]. The tumour suppressor gene, AT-Rich 
Interaction Domain 1A (ARID1A) also seems to play a role in early malignant 
transformation of endometriosis to EC or CCC[11-13]. Mutations in this gene have been 
identified in up to 50% of CCCs and approximately one third of ECs[12].

HGSC differs significantly from the other subtypes. The classical histological 
appearance is of intermediate sized tumour cells, marked nuclear atypia, and necrotic 
areas (Figure 1). Immunostaining with WT1, PAX8, P16, and P53 assist with the 
diagnosis. Interestingly, WT1 staining helps discriminate between HGSC and pseudo-
endometrioid. Molecularly, it is characterised by the ubiquitous presence of TP53 
mutations and CCNE1 gene (encoding cyclin E1) amplification in 20% of cases[14-19]. It 
is, however, rarely associated with mutations such as KRAS, BRAF, ERBB2, HER2, 
PTEN, CTNNB1, ARID1A and PIK3CA[6,7,14,15,16,19]. Germline mutations in the BRCA1 or 
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Figure 1 Histopathological assessment of high-grade serous carcinoma. The classical appearance on hematoxylin and eosin with intermediate sized 
tumor cells, marked nuclear atypia, and necrotic areas. Immunostaining with WT1, PAX8, P16, and P53 assist with the diagnosis. Interestingly WT1 staining helps 
discriminate between high-grade serous carcinoma and pseudo-endometrioid (bottom left) (Original figure, images courtesy of Professor McCluggage WG).

BRCA2 genes are present in 6.5%-19% of HGSCs and a smaller proportion have 
somatic mutations[20]. Whilst BRCA1 somatic mutations are rare in sporadic disease (< 
10%), BRCA1 is reported to be downregulated in 15%-72% via mechanisms of 
epigenetic inactivation[20]. To complicate things further, the HGSC subtype is also 
highly molecularly heterogeneous, with the possible inclusion of further 
subpopulations that display distinct gene expression profiles and variable responses to 
current chemotherapy regimens[21].

BLOOD-BASED DIAGNOSTICS OF EOC
The diagnosis of women with symptoms suspicious of EOC utilises the biomarker 
serum cancer antigen 125 (CA125), which was first described by Bast et al[22] in 1981. It 
was identified by the murine monoclonal antibody OC-125 as an antigenic 
determinant on a high molecular-weight glycoprotein. In adults, CA125 is expressed in 
tissues derived from both coelomic and Mullerian epithelia. It is also expressed by 
epithelia of the pancreas, colon, gall bladder, lung, kidney, and stomach[23].

In clinical practice, serum CA125 and preliminary radiological imaging, in the form 
of an abdomino-pelvic ultrasound, results are used to calculate the risk of malignancy 
index as a method of triaging patients for tertiary/quaternary referral[24]. Although it is 
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used to aid diagnosis, only 50% of early stage EOCs show expression[23,25].
CA125 is most effective as a marker of disease status in patients undergoing 

chemotherapy treatment for EOC[26,27]. Unfortunately, it is not specific to malignancy, 
expressed by several other benign conditions including diverticulitis, endometriosis, 
liver cirrhosis, uterine fibroids, menstruation, pregnancy, pelvic infection, and uterine 
leiomyomata[28-33]. It is also elevated by other malignancies such as pancreatic, bladder, 
breast, liver, and lung cancers[33].

With earlier diagnosis the key to improved survival from EOC, there has been 
considerable effort to identify alternative biomarkers or develop combination markers 
with CA125, without overwhelming success[34]. To improve the sensitivity of CA125 
the Risk of Ovarian Cancer Algorithm (ROCA) was developed[35]. This algorithm 
compares the CA125 level of cases with a profile of healthy women. It calculates a risk 
estimate based on this comparison and the age-specific incidence of EOC. The 
algorithm was employed within the UKCTOCS trial and various others with varying 
degrees of success[36-38].

The only novel biomarker that has showed promise, since CA125, is human 
epididymis protein 4 (HE4)[39]. This biomarker has been shown to improve diagnostic 
accuracy, both alone and in combination with CA125[29,40-42]. A recent meta-analysis 
looked at diagnostic performance with two control groups (healthy women and 
women with benign gynaecological disease)[40]. In the analysis vs “healthy women” the 
sensitivity and specificity for HE4 in diagnosing ovarian cancer were 83% (95%CI: 
77%-88%) and 90% (95%CI: 87%-92%), respectively. Receiver operator characteristic 
(ROC) analysis revealed an area under the curve (AUC) of 0.9271. In the women with 
benign disease analysis, the sensitivity and specificity were 74% (95%CI: 69%-78%) and 
90% (95%CI: 87%-92%) respectively. The ROC analysis AUC was 0.8853. This suggests 
HE4 carries potential as an early-warning biomarker. Contrastingly, another meta-
analysis looking at CA125 and HE4 combined diagnostic performance showed HE4 to 
be no better than CA125 for predicting EOC[43].

A panel of biomarkers that included CA125, HE4, transthyretin, CA15.3, and 
CA72.4 was evaluated using specimens assembled from multiple cohort and 
randomised trial[44]. Phase II and III biomarker studies concluded that CA125 remained 
the “single-best biomarker” for EOC. Another retrospective study evaluated seven 
proteomic biomarkers (apolipoprotein A1, truncated transthyretin, transferrin, 
hepcidin, beta-2 microglobulin, connective tissue activating protein III, and inter-
alpha-trypsin inhibitor heavy-chain) in pre-diagnostic blood samples[45]. The addition 
of the seven protein biomarkers to CA125 did not improve sensitivity compared to 
CA125 alone.

The combination of CA125 and HE4 was developed into an algorithm in an effort to 
improve EOC detection[46]. The Risk of Ovarian Malignancy Algorithm (ROMA) 
successfully classified 93.8% of EOC patients as high risk. The model has been assessed 
in a range of populations with varying degrees of accuracy[42,47-53]. It is for this reason 
that HE4 or ROMA has not translated into routine clinical care, with some groups 
requesting further in-depth validation.

CATCHING THE SILENT KILLER: ATTEMPTS TO DATE
The evidence that population screening impacts cancer-specific mortality is ever-
accumulating. There are examples of successful cancer screening programmes across 
many countries, particularly for breast, bowel, and cervical cancers. A significant 
reduction in mortality has been seen in the latter[54]. The real success of these screening 
programmes is the understanding of the pathogenesis of the disease. Currently there is 
no effective screening method for ovarian cancer and the United States Preventative 
Services Task Force (USPSTF) maintains its position that it should not be undertaken, 
in any form[55].

Ovarian cancer is relatively rare with a low prevalence in the general population. 
An effective and acceptable screening strategy must have not only a high sensitivity 
for early-stage disease (> 75%) but must also have a very high specificity (99.6%) to 
achieve a positive predictive value (PPV) of 10%. In real terms, that equates to a 
threshold of no more than 10 staging laparotomies to identify one ovarian cancer[56].

The main methods of ovarian cancer screening assessed to date are pelvic 
ultrasound scanning and serially measuring the serum biomarker, CA125. Pelvic 
ultrasound in expert hands is a highly sensitive diagnostic method[57]. Unfortunately, 
because it relies heavily on individual expertise, discrimination between benign and 
malignant pelvic masses in routine clinical practice is challenging. Serum CA125 is 
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most effective as a marker of disease status in patients undergoing chemotherapy 
treatment for EOC[26]. It is not particularly specific to malignancy and can be expressed 
by a number of other benign conditions including endometriosis, pelvic infection, and 
uterine leiomyomata. It is elevated in only 50% of early stage EOCs, and thus can 
cause unnecessary medical intervention and significant patient distress[25].

There have been a few large prospective trials examining ovarian cancer screening. 
Each utilised different screening strategies but all aimed to assess the same primary 
outcome: Mortality.

The United States Prostate Lung Colorectal Ovarian Cancer Screening Trial 
(USPLCO) comprised over 78000 women aged 55-74 years in two arms; annual 
transvaginal ultrasound and serum CA125 vs routine clinical care[58]. The study 
showed no difference in mortality between the two cohorts. The United Kingdom 
Collaborative Trial in Ovarian Cancer Screening (UKCTOCS) is the largest screening 
trial to date, enrolling over 200000 postmenopausal women randomised into no 
intervention or quarterly (initially annual) screening[38]. The screening cohort was 
broken down into transvaginal ultrasound alone or serum CA125 screening, 
interpreted by the ROCA algorithm, with second-line transvaginal ultrasound (termed 
multimodal screening). UKCTOCS finally reported mortality data in 2016. At a median 
follow-up of 11.1 years, ovarian cancer was diagnosed in 1282 (0.6%) women. There 
was no difference across subgroups with 0.7% in the multimodal screening group, 
0.6% in the ultrasound only group, and 0.6% in the control group. Of these women, 
0.29% in the MMS group, 0.30% in the USS group, and 0.34% in the control group died 
of ovarian cancer. The primary analysis revealed a non-statistically significant 
mortality reduction of 15% (P = 0.10) with MMS and 11% (P = 0.21) with USS alone.

Although the primary end point did not reach statistical significance, further 
analysis suggested improved mortality reductions for the MMS group compared to the 
control group after 7 years; 8% reduction for the first 7 years compared to 23% for 
years 7 to 14; suggesting a “late effect” mortality benefit[38]. In response to the “late 
effect” mortality trend proposed by the UKCTOCS study, extended mortality results 
were reported for the USPLCO trial with a median 15 year follow up (range 13 to 19 
years)[59]. However, following this extended analysis, the study reiterated its initial 
findings and reported no change in the mortality benefit of screening using CA125 and 
TVUS.

NEW PATHOLOGICAL KNOWLEDGE
To date there have been no disease-specific biomarkers validated for any of the five 
main EOC types. Moving forward, this approach would be more appropriate given 
that these represent different tumour types with a different pathogenesis and 
behaviour and require different management. Currently, the spotlight is on HGSC as it 
is the most frequent and most aggressive type of EOC.

For some time, scientists and clinicians have been unable to identify a pre-invasive 
stage to HGSC, and the disease did not appear to fit this model. This is likely 
explained by the fact the disease spreads so aggressively quite early in its course, 
making the pathological detection of early stage disease elusive[60]. There has been 
considerable effort employed to define the molecular mechanisms of HGSC and, until 
recently, its pathogenesis remained undefined. Historically, it was thought HGSC 
developed from the ovarian surface epithelium (OSE) due to errors in cell replication 
associated with the repair of trauma incurred by ovulation[61]. Several epidemiological 
studies supported this theory with evidence that women with an increased number of 
lifetime ovulations are at a much greater risk of developing HGSC[62-67].

However, in recent years, overwhelming pathological evidence has emerged that 
supports the theory that the distal fallopian tube (fimbria) is the origin of HGSC[68]. The 
fact that fallopian tube epithelium is embryologically mullerian and HGSCs are 
mullerian in nature suggests a potential site of origin here for HGSC. Furthermore, 
malignant transformation of fallopian tubal epithelium yields almost exclusively 
HGSC[69]. HGSC occurring concurrently with fallopian tubal mucosal disease was first 
documented by Bannatyne et al[70] but this was interpreted to represent a second 
primary tumour focus rather than being directly related to the ovarian disease. 
Subsequently a number of research groups acknowledged that there was an increased 
risk of primary fallopian tubal HGSC in BRCA1/2 mutation carriers[71-73]. Zweemer 
et al[74] presented the first evidence of primary tubal HGSC in BRCA1 mutants and, 
subsequently, a large prospective study of BRCA1 mutation carriers revealed a 120-
fold increased risk, compared to the general population, of primary fallopian tube 
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carcinoma[75]. In 2006, Finch et al[76] published clinical and pathological findings of 
prophylactic salpingo–oophorectomy specimens from 159 BRCA1/2 mutation carriers. 
Seven (4.4%) occult fallopian tube cancers were identified in these women, in the 
absence of symptoms. Multiple other investigators also recorded the presence of occult 
tubal tumours at prophylactic salpingoophorectomy[76-83]. The incidence of these occult 
lesions ranged from 6%-40% with up to 100% of them occurring in the fallopian tube, 
usually in the absence of ovarian involvement. Further investigation has revealed most 
HGSCs arise from the distal fallopian tube via an in-situ carcinomatous lesion referred 
to as serous tubal intraepithelial carcinoma (STIC)[84,85].

THE FALLOPIAN TUBE AS THE ORIGIN OF HGSC
There is now compelling evidence from both our group and others worldwide that 
most, but not all, HSGCs arise from the distal fallopian tube, and not the ovary, from 
STIC[86-88]. Detailed assessment of the FTs in cases of extrauterine HGSC shows 
involvement of the fimbriae in 70% and STIC in approximately 50% of the cases[89]. At a 
molecular level; Cyclin E1 (CCNE1), remodelling and spacing factor 1 (Rsf-1), and 
fatty acid synthase (FASN) are all upregulated in HGSC. Rsf-1 encodes an important 
ATP-dependent chromatin remodelling protein which is an integral component of 
DNA replication and cell cycle progression[90,91]. FASN is a cytoplasmic enzyme 
involved in tumour initiation and progression[92,93]. These oncogenes are all 
overexpressed in STIC lesions[94,95]. Another oncogene integral to this disease process is 
TP53[96]. Mutation of this tumour suppressor is known to be associated with HGSC and 
recent evidence shows it be characteristic of HGSC and essentially ubiquitous[15,97,98]. 
The fact that STIC lesions and concurrent HGSC have been shown to contain identical 
TP53 mutations further indicates a clonal relationship between the two entities[98,99]. 
Gene expression profiling of a unique sample set containing normal OSE, normal FT, 
STIC, ovarian HGSC, and omental metastases was performed by our group. 
Bioinformatic analysis revealed that the tumour samples clustered in one cohort and 
normal FT samples clustered together and separately from the normal OSE samples. 
Notably, the normal OSE samples clustered separately from all other profiled samples 
and STIC samples clustered within the tumour cohort. Multi-dimensional scaling 
analysis confirmed the strong common biology present between STIC and the two 
tumour groups. It also affirmed that OSE has no significant common genetic biology to 
the other samples. This study further confirms the fallopian tubal origin of HGSC[86].

The proportion of HGSCs derived from the FT is currently unknown, mainly due to 
the fact HGSC usually presents at an advanced stage making the detection of 
precursor lesions difficult and depends on the criteria used to determine a tubal 
primary. However, in the most detailed prospective study, using criteria for site 
assignment of extrauterine HGSC adopted by the International Collaboration on 
Cancer Reporting (ICCR), 83% of cases were determined to be of tubal origin and 
almost all the remainder of ovarian origin with a primary peritoneal origin being 
extremely rare when strict criteria are used[100-103].

EXPLOITING THIS NOVEL MOLECULAR KNOWLEDGE: THE LIQUID 
BIOPSY
Precision oncology seeks to obtain molecular information about cancer to improve 
patient outcomes. Tissue biopsy samples are widely used to characterise tumours; 
however, this method of tumour analysis has limitations. The term “liquid biopsy” 
was first used to describe methods that can derive the same diagnostic information 
from a blood sample, or other body fluid, that is typically derived from a tissue biopsy 
sample[104]. In recent years, the focus of precision medicine is increasingly turning 
towards liquid biopsies as they are minimally invasive and can be repeated at multiple 
time points facilitating “real-time” disease monitoring[105].

Liquid biopsy (Figure 2) can include measurement of soluble factors, such as 
circulating tumour nucleic acids (DNA/RNA), circulating tumour cells (CTCs), 
proteins, and extracellular vesicles such as exosomes. All of which have been 
investigated for potential as diagnostic, predictive and prognostic biomarkers[106].

CTCs are cells originating from a solid tumour that are detectable in the peripheral 
blood. They are considered a prerequisite step in establishing distant metastases[107]. 
The detection of CTCs in peripheral blood (Figure 3) is a novel type of cancer 
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Figure 2  The difference between liquid and traditional tissue biopsy (Original figure).

Figure 3 The extraction of circulating tumor cells can be undertaken by a range of methods (reproduced from Broncy et al[166] 2018 under 
CC BY-NC 4.0). RCC: Renal cell carcinoma.

biomarker[108]. CTCs can be isolated from blood samples and used to follow patients 
over time. They can provide significant information that will better characterise 
underlying disease biology and metastases. However, CTCs are rare, and their 
isolation, quantification and molecular characterization carry many challenges. An 
average metastatic carcinoma patient has between 5 and 50 CTCs for every 7.5 mL of 
blood[109]. This places technical limitations on the ability to identify and characterise the 
sub-population of cells that carry the relevant genetic information. CTCs tend to 
aggregate with leucocytes so adequate cell-surface markers and separation techniques 
need to be utilised to improve purity[109].

CTCs were first detected on the background of malignant melanoma and have 
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subsequently been identified associated with a range of solid tumours[110]. There are a 
range of approaches for isolation of CTCs including; mRNA-based, protein-based, and 
cell size-based. The mRNA-based strategy involves RqPCR techniques. This carries 
some limitations including: (1) Amplification of non-specific products, (2) Lack of 
validated protocols for sample processing, RNA-preparation, cDNA synthesis and 
PCR conditions, and (3) A lack of sample quality control measures[107]. These issues all 
raise the possibility of variations in sensitivity and specificity of a biomarker 
employing this method. Separation and enrichment of CTCs, using magnetic bead 
technologies, followed by flow cytometry or immunohistochemistry is another method 
of quantification and characterisation of CTCs[106]. This method eliminates some of the 
concerns with RqPCR techniques, but further research needs to be done to clarify the 
reproducibility of different techniques. The isolation by size of epithelial tumour cells 
is a direct method for CTC identification and has been applied in various epithelial 
cancers[107]. The CTCs are collected by filtration and, following staining for specific 
markers, the cells are identified and quantified by immunohistochemistry or molecular 
pathological techniques.

The only clinically validated, FDA-approved blood test for CTCs is the 
CELLSEARCH® CTC Test (Janssen Diagnostics, New Jersey, United States). It has 
shown promise as a prognostic indicator in prostate, colorectal, and breast 
cancers[111-113]. This technology was assessed within the EOC population and while it 
did provide evidence that ovarian CTCs were present in blood it did not correlate with 
clinical outcomes[113]. A further study assessed a unique cell adhesion matrix based, 
functional cell enrichment and identification platform[114]. There was clear evidence 
that elevated CTCs correlated with worse OS and PFS. In fact, this method proved 
more specific than CA125 in detecting EOC malignancy in high-risk patients. A recent 
meta-analysis assessed eleven studies comprising a total of 1129 patients[115]. It 
reported CTC status to be a significant prognostic indicator (OS:HR 1.61, 95%CI: 1.22-
2.13; PFS:HR 1.44, 95%CI: 1.18-1.75). A subgroup analysis showed the RqPCR 
methodology to be superior to both CELLSEARCH® and immunohistochemical 
methods.

Despite the potential role of CTCs in cancer diagnostics, CTC methods are generally 
used for research purposes, and only a few methods have been accepted for clinical 
application. This is because of the difficulties caused by CTC heterogeneity, CTC 
separation from blood, and a lack of thorough clinical validation[116].

In recent years there has been a significant amount of research into the use of 
circulating cell free DNA (cfDNA) as a biomarker. The presence of circulatory cfDNA 
was identified over seventy years ago[117]. Along with technological evolution, 
subsequent research has demonstrated that cancer cells release cfDNA fragments into 
the circulation and other bodily fluids, termed circulating tumour DNA (ctDNA), and 
these fragments carry all the genetic and epigenetic characteristics of the primary 
tumour[118]. Fragments of cfDNA in blood samples are between 150 and 200 bp long, of 
which up to 90% originates from the tumour[118]. It is reported that tumours containing 
approximately 50 million malignant cells release enough DNA for the detection of 
tumour cfDNA in blood[119]. Of note, this is well below the limit of resolution of 
radiological imaging (approximately 1 billion cells)[120].

As a result, ctDNA analysis has emerged as a potential blood-based “liquid biopsy” 
for early detection, diagnosis, staging and prognosis, monitoring response to 
treatment, monitoring minimal residual disease and relapse and identifying acquired 
drug resistance mechanisms.

There are several hypotheses as to the origin and mechanism of release of 
cfDNA/ctDNA into the circulation; however, the precise mechanism(s) have yet to be 
determined. Early studies suggested that ctDNA enters the circulation following lysis 
of cells on the interface between the tumour and circulation[121]. Another theory 
proposed that ctDNA may originate from the destruction of tumour micro metastases 
and circulating cancer cells[122]. Current consensus suggests that most cfDNA in healthy 
individuals is released from the bone marrow and white blood cells, whereas ctDNA 
in cancer patients is derived from necrotic and apoptotic cancer cells. Three possible 
mechanisms resulting in the shedding of DNA from both healthy and tumour cells 
have been described: Apoptosis, necrosis, and active cellular release[123]. Apoptosis 
causes the systematic cleavage of chromosomal DNA into multiples of 160-180 bp 
stretches, resulting in the extracellular presence of mono-(approximately 166 bp) and 
poly-nucleosomes (332 bp, 498 bp)[124]. Necrosis results in nuclear chromatin clumping 
and non-specific digestion, producing DNA fragments that are typically larger than 
10000 bp. DNA fragments derived from active cellular secretions have been shown to 
range between 1000 and 3000 bp. Most of the DNA present in plasma occurs as 
fragments around 180 bases and 360 bases in size and reflects the likely apoptotic 
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origin of the DNA[125].
In cancer patients, cfDNA may originate from multiple sources, including cancer 

cells, cells from the tumour microenvironment and normal cells such as 
haematopoietic stem cells, muscle cells and epithelial cells. Once present in circulation, 
cfDNA levels are influenced by multiple factors including its: (1) Dynamic association 
and disassociation with extracellular vesicles and several serum proteins, (2) Rate of 
binding, dissociation and internalisation by cells; and (3) Rate of digestion or 
clearance, including the activity of deoxyribonuclease I (DNAse), renal excretion into 
urine, and uptake by the liver and spleen[126]. Furthermore, cfDNA levels can be 
elevated due to the lysis of white blood cells (WBCs) and release of germline DNA, 
thus diluting ctDNA concentrations[127]. For this reason, it is crucial that during 
molecular analysis tumour-specific ctDNA is differentiated from non-tumour cfDNA 
and contamination of blood samples through WBC lysis is kept to a minimum.

THE LIQUID BIOPSY IN CLINICAL PRACTICE
Disease staging
Studies have demonstrated that cfDNA levels in cancer patients are generally higher 
than those of healthy subjects. cfDNA is present in healthy individuals at average 
concentrations of 30 ng/mL, ranging from 0-100 ng/mL[118]. In cancer patients, given 
the additional release of cfDNA from tumour cells, the average concentration of 
cfDNA is much higher, at approximately 180 ng/mL[128]. cfDNA concentration has also 
been shown to correlate with tumour size, disease stage and metastatic burden[129-131].

In a study of 640 patients with different cancer types at varying stages, Bettegowda 
et al[131] showed that cfDNA levels were approximately 100 times higher in stage IV 
disease compared to stage I disease, providing a rough estimate of tumour size based 
on cfDNA concentration. In another study, aimed at providing a more sensitive metric 
for estimating tumour size, researchers reported that mutant alleles increased by 6 
mutant copies per ml of plasma for every cubic centimetre of tumour in participants 
with HGSC[129].

In one of the first studies to examine cfDNA concentration in EOC, Kamat et al[130] 
demonstrated that cfDNA levels were elevated in advanced EOC compared to normal 
controls. In a more recent study, the same group evaluated the role of preoperative 
total plasma cfDNA levels in predicting clinical outcomes in patients with EOC[132]. 
Again, they reported significantly higher cfDNA levels in the EOC group (median 
10113 genomic equivalent/mL, GE/mL) compared with benign ovarian tumours 
(median, 2365 GE/mL; P < 0.001) and unaffected controls (median, 1912 GE/mL; P < 
0.001). Moreover, a statistically significant association of cfDNA > 22000 GE/mL with 
decreased PFS (P < 0.001) was observed, which was superior to CA125 in predicting 
mortality. Furthermore, the study reported elevated cfDNA levels in patients with 
early stage disease which was significantly higher compared with those with benign 
disease and controls (P < 0.01). Shao et al[133] also reported significantly elevated cfDNA 
levels in advanced stage OC compared to early stage (P < 0.01). In contrast, No et al[134] 
reported no significant difference between cfDNA levels in EOC patients compared to 
controls. In this study, preoperative blood samples of 36 EOC patients and 16 benign 
tumours were analysed using commercially available copy number assay kits to 
measure cfDNA levels of four genes; beta-2-microglobulin (B2M), member RAS 
oncogene family (RAB25), claudin 4 (CLDN4) and ATP-binding cassette subfamily F 
member 2 (ABCF2). This result may be explained, in part, by the fact that, unlike the 
previous studies, this study used serum instead of plasma as the cfDNA source.

In a study investigating the presence of tumour-specific TP53 sequences in blood 
and peritoneal fluid in EOC patients, Swisher et al[135] detected 30% (21/69) of patients 
with confirmed TP53 mutations (exon 2-11) in plasma or serum samples. cfDNA was 
detected in 93% (28/30) of cases in peritoneal fluid, including six cases with negative 
cytology. Following multivariate analysis, they concluded that detection of cfDNA 
was associated with decreased survival (P = 0.02). Dobrzycka et al[136] investigated the 
prognostic significance of cfDNA and blood plasma p53 antibodies (p53-Ab) in EOC. 
Serum p53-Ab is predominantly associated with TP53 gene missense mutations and 
TP53 accumulation in the tumour. cfDNA and p53-Ab were more frequently detected 
in patients with HGSC (P < 0.001) compared to other EOC subtypes. Prognosis was 
significantly worse in cfDNA positive patients compared to cfDNA negative (P = 
0.022). Similarly, patients who were p53-Ab positive had a significantly worse 
prognosis than those who were p53-Ab negative (P < 0.001).

Whole exome sequencing (WES) and targeted gene sequencing has been employed 
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to identify tumour-specific mutations in gynaecological cancers[137]. Subsequent 
monitoring of these mutations using ctDNA and digital PCR technology, in patients 
with gynaecological cancers, detected the recurrence of cancer, on average, seven 
months before disease was visible on cross-sectional imaging. Furthermore, 
undetectable levels of ctDNA at six months following initial treatment was associated 
with significantly improved progression free and overall survival.

The correlation between ctDNA levels and tumour stage/size highlights the 
potential prognostic value of ctDNA. Several studies have demonstrated an 
association between ctDNA and survival outcome in a range of cancers[138].

Personalised therapy
Assessing the mutational profile of cancer patients is used as a stratification tool to 
identify those who may be suitable for targeted therapies. For example, in patients 
with non-small cell lung cancer (NSCLC), the tyrosine kinase inhibitors (TKI) gefitinib 
and erlotinib are only beneficial to those with an activating mutation (L858R or exon 
19 deletion) in the epidermal growth factor receptor (EGFR) gene[139]. Similarly, 
patients with malignant melanoma will only benefit from BRAF therapy if they 
harbour an activating BRAF mutation (V600E)[140]. Identifying these mutations and 
others enables clinicians to alter therapies accordingly and optimise patient care.

Historically, the assessment of mutational status has been carried out using tissue 
biopsies, however, this practice has some inherent disadvantages. The analysis of a 
single tissue biopsy taken from a primary tumour or metastatic site is likely to 
underestimate the mutational landscape of a tumour and can lead to inaccurate 
classification. Performing several biopsies on one patient can be impractical and 
extremely invasive. Furthermore, tissue biopsies are associated with complications, 
such as infection and pain, and often fail to obtain enough material for high quality 
mutational profiling. Numerous studies, in various malignancies, have shown that 
these limitations may be overcome by mutational profiling of cfDNA[106].

In CRC, high concordance between tissue and plasma samples have been reported 
for the detection of KRAS, NRAS and BRAF mutations, with concordance rates of 
91.8% reported in one study for RAS mutations[141]. Another study suggested that 
cfDNA could replace tumour-tissue analysis resulting in considerable reductions in 
data turnaround time[142].

There are a limited number of studies investigating the role of cfDNA and treatment 
resistance in EOC. Murtaza et al[143] carried out WES in serial plasma samples to track 
the genomic evolution of metastatic cancers in response to treatment. Three patients 
with advanced EOC were included in the study. Quantification of allele fractions in 
plasma identified mutant alleles association with emerging treatment resistance. This 
study established a proof-of-principle that WES of ctDNA could complement current 
invasive biopsy approaches to identify mutations associated with acquired resistant in 
advanced cancers.

Overall, these studies demonstrate high concordance between tissue biopsies and 
plasma samples with higher diagnostic accuracy recorded using cfDNA analysis in 
most cases.

Treatment monitoring
The short half-life of cfDNA, coupled with the minimally invasive nature of 
venepuncture compared to tissue biopsies makes cfDNA an attractive tool for 
monitoring treatment response and disease burden (Figure 4). Numerous studies have 
demonstrated that low levels of cfDNA are associated with a positive treatment 
response in a range of cancers, including EOC[144]. In contrast, high levels of cfDNA 
generally correlate with poor response to treatment, treatment resistance, high risk of 
relapse and poor survival. In the majority of these studies, cfDNA was reported to 
monitor response to treatment more accurately than traditional methods. In one 
example, Capizzi et al[145] investigated the role of cfDNA levels in predicting response 
to chemotherapy in EOC. In this prospective non-randomised clinical trial, 22 patients 
with advanced EOC (FIGO stage IIIC or IV) undergoing neo-adjuvant chemotherapy 
were recruited alongside 50 female healthy blood donor controls. Plasma cfDNA levels 
were quantified before, during and after chemotherapy. Median cfDNA levels were 
reported to be significantly higher in the cancer group (29.6 ± 22.7 ng/mL) prior to 
chemotherapy, compared to controls (6.4 ± 4.0 ng/mL), with a sensitivity of 77% and 
specificity of 96%. A general trend was found between elevated cfDNA levels on 
completion of chemotherapy and disease progression (P = 0.007), however, the sample 
size was too small to provide conclusive survival data.

In a retrospective study of 40 patients with relapsed HGSC, Parkinson et al[129] used 
sequence specific assays to detect predefined TP53 mutations and quantified the TP53 
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Figure 4  Potential liquid biopsy sources (blood, uterine/cervical aspirates) and downstream clinical applications within epithelial ovarian 
cancer (reproduced from Muinelo-Romay et al[167] 2018 under CC BY-NC 4.0).

mutant allele frequency (TP53MAF) in cfDNA using digital PCR before, during and 
after chemotherapy. Pre-treatment ctDNA TP53MAF concentration was positively 
correlated with total volume of disease, and a decrease of > 60% after one cycle of 
chemotherapy was associated with longer PFS.

Identifying treatment-resistant disease
Acquired drug resistance may emerge as a result of de novo mutations or the expansion 
of a sub-clonal cell population with pre-existing resistance[146]. The underlying 
mechanisms of acquired resistance are poorly understood. However, longitudinal 
sampling and analysis of cfDNA can provide valuable insight into the molecular 
response of cancer during treatment.

cfDNA can be used to monitor the development of resistance by screening for 
known mutations associated with resistance. Using a digital PCR assay, Ishii et al[147] 
examined cfDNA in plasma from patients with relapsed NSCLC to identify resistance 
mutations, namely T790M mutations, associated with EGFR-TKIs. T760M mutation 
was detected in plasma with a sensitivity of 81.8% and specificity of 85.7%, and overall 
concordance between plasma and tissue samples was 83.3%. This study showed that 
digital PCR analysis of plasma is a feasible and accurate alternative to tissue biopsy for 
detecting T760M mutations in NSCLC patients that become resistant to EGFR-TKIs.

Serial profiling of cfDNA can identify resistant sub-clones before the onset of 
clinical progression and enable earlier intervention. In a study investigating the 
acquired resistance to anti-EGFR treatment in CRC, 60% (6/10) patients showed the 
emergence of secondary KRAS mutations up to four months before an increase in the 
conventional marker (CEA) was detected, and nine months prior to radiological 
evidence of relapse[148]. This study also showed that although tumour cells exhibited 
resistance to EGFR inhibitors, they remained sensitive to a combination of EGFR and 
MEK inhibitors, enabling early and personalised treatment adjustment.

A key resistance mechanism to platinum-based chemotherapies and PARP 
inhibitors in BRCA-mutant cancers is the acquisition of BRCA reversion mutations that 
restore protein function. Lin et al[149] performed targeted next-generation sequencing of 
cfDNA extracted from plasma collected prior to rucaparib treatment in 112 patients 
with germline or somatic BRCA-mutant HGSC enrolled in the ARIEL2 study. They 
found BRCA reversion mutations in cfDNA from 18% (2/11) of platinum-refractory 
and 13% (5/38) of platinum-resistant patients, compared with 2% (1/48) of platinum-
sensitive patients (P = 0.049). Furthermore, patients without BRCA reversion 
mutations detected in pre-treatment cfDNA had significantly longer rucaparib PFS 
than those with reversion mutations (median, 9.0 mo vs 18 mo; HR, 0.12; P < 0.0001).

In summary, analysis of cfDNA collected before and after treatment can provide a 
more comprehensive view of the genetic response of a patients’ tumour, including the 
dynamic changes in the mutational landscape as well as the heterogeneity that 
develops due to the selective pressure of therapy.
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Minimal residual disease
Another important aspect of cancer management is deciding whether further 
treatment is required following tumour resection. Decision-making for adjuvant 
therapy is based on disease stage and certain high-risk clinical or pathological features. 
As there is, currently, no effective tool of identifying patients with complete tumour 
resection this practice leads to potential under- and over-treatment with the associated 
consequences.

cfDNA analysis has shown great promise in the detection of minimal residual 
disease (MRD) and subsequent risk of recurrence. In one of the first studies to evaluate 
the use of cfDNA as a biomarker of MRD, Diehl et al[150] showed that tumour derived 
cfDNA levels decreased by 99% within 24 h after complete surgical resection in CRC, 
whereas in cases of incomplete resection cfDNA levels did not change significantly 
and in some cases increased. Furthermore, in subjects with detectable levels of cfDNA 
after surgery relapse generally occurred within one year. cfDNA levels appeared to be 
a more reliable and sensitive indicator than the conventional biomarker 
(carcinoembryonic antigen) in this cohort. More recently, Chaudhuri et al[151] 
demonstrated the potential of cfDNA deep sequencing analysis in predicting 
prognosis in patients who had completed potentially curative treatment for early-stage 
NSCLC with surgery or radical radiotherapy. They retrospectively analysed blood 
samples from a cohort of 40 patients, with plasma samples taken before treatment and 
every 2 to 6 mo during follow-up. ctDNA was detectable in 93% (37/40) of patients 
before any treatment and was detectable in 54% of patients after treatment, all of 
whom went on to relapse. Detection of ctDNA postoperatively had a very high risk of 
future relapse (HR, 43.4; 95%CI, 5.7–341), with a median 5.2-mo lead time over clinical 
progression. Further studies have reported similar findings in a range of malignancies, 
including EOC[126].

Although these studies are encouraging there remains a large proportion of patients 
who relapse in whom cfDNA is not detected. Furthermore, the vast majority of these 
cfDNA assays are patient and mutation specific, limiting their clinical application to 
wider patient populations. In order to overcome these limitations further research is 
required to establish highly sensitive cfDNA assays that enable the identification of 
patients likely to benefit from adjuvant treatments and avoid the adverse effects 
resulting from unnecessary treatments.

CATCHING THE SILENT KILLER: A BETTER WAY?
Despite years of research in this area, the diagnosis of early stage cancer remains 
extremely challenging. Recent research suggests that technological advances in the 
analysis of cfDNA may provide a solution to these challenges. Studies have shown 
that cancer-associated mutations can be detected in cfDNA in early-stage disease, 
before the presence of symptoms and up to 2 years before cancer diagnosis[152-156].

Cervical screening tests have revolutionised the management of cervical cancer by 
enabling early detection of preinvasive disease. Recently, the traditional Papanicolau 
smear has been replaced, in many countries, by a liquid-based cytology (LBC) method. 
Kinde et al[152] exploited this method of DNA collection to develop an assay to detect 
endometrial and ovarian cancer. Mutational profiling was carried out on 46 cancer 
patients (24 endometrial cancers and 22 ovarian cancers) for whom LBC specimens 
were available. The same mutations were detected in the corresponding LBC samples 
in 100% (24/24) of the endometrial cancers and 41% (9/22) of the ovarian cancers. The 
same group went on to develop the PapSEEK test using a similar technique to analysis 
a panel of 18 genes using multiplex PCR[157]. They reported sensitivity of 33% (95%CI, 
27%-39%) in the 245 EOC patients tested, including 34% of patients with early stage 
disease. Specificity was approximately 99% with only 1.4% of 714 women without 
cancer testing positive. They also analysed plasma in 83 EOC patients for 16 genes of 
interest and found ctDNA in 43% (95%CI, 33%-55%), with none of the plasma samples 
from 192 healthy controls testing positive (specificity 100%). When combining LBC 
samples with matched plasma samples, sensitivity for OC was increased to 63% 
(95%CI, 51%-73%), including 54% with early stage disease. Although improvements 
are required before applying this test in routine practice, it highlights the potential to 
incorporate cfDNA analysis into routine screening tools such as the cervical screening 
programme.

Non-invasive prenatal testing (NIPT) identifies foetal aneuploidy by sequencing 
cfDNA in maternal plasma. Pre-symptomatic maternal malignancies have been 
incidentally detected during NIPT[155]. In a case control study of prospectively collected 
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preoperative HGSC plasma samples, Cohen et al[153] analysed 32 women with HGSC 
(16 early stage (FIGO I-II) and 16 advanced stage (FIGO III-IV)) and 32 benign controls. 
Plasma cfDNA was sequenced using a commercial NIPT platform. They detected 
40.6% (13/32) HGSC cases using sub-chromosomal analysis, including 38% (6/16) of 
early stage cases. Although sensitivity was low and correlation with paired tumour 
DNA was not possible due to a lack of archived specimens, this study established the 
proof-of-principle that tumour DNA is detectable using NIPT.

The same group developed a blood test to detect eight common cancers through 
assessment of levels of circulating proteins and mutations in cfDNA[154]. The 
CancerSEEK® test was used to assess 1005 patients who had been diagnosed with stage 
I to III cancers of the ovary, liver, stomach, pancreas, oesophagus, colorectum, lung 
and breast. The median sensitivity of CancerSEEK® among the eight cancer types was 
70% (P < 10−96) and ranged from 98% in OC to 33% in breast cancers. At this sensitivity, 
the specificity was > 99%; with 7 of the 812 controls recorded as positive. Although 
sensitivity was reported as > 70% for stage II (73%) and stage III (78%) disease, only 
43% of stage I cancers were detected. A key concern with this test is its achievable 
PPV. The prevalence of the eight cancers in healthy individuals > 64 years of age is 
approximately 1%. Assuming the CancerSEEK® test could achieve 99% sensitivity and 
specificity, the resulting PPV would be only 50%, which equates to 50% of positive 
tests being false positives. However, these results imply that combination strategies 
have the power to greatly improve liquid biopsy analyses.

Gormally et al[156] assessed the significance of plasma DNA mutations for subsequent 
cancer development in healthy subjects in a large longitudinal prospective study. The 
study included > 520000 healthy volunteers recruited from 10 European countries. 
Plasma specimens were tested for TP53 and KRAS2 mutations. Results showed that 
mutations in TP53 and KRAS2 could be detected in cfDNA of healthy subjects on 
average 20.8 mo (range, 1.8-44.8) and 14.3 mo (range, 2.6-24.9) before cancer diagnosis, 
respectively. TP53 and KRAS2 mutations were detected in 3% and 1%, respectively, of 
subjects who did not develop cancer during follow up. This is an important finding as 
it highlights the presence of high levels of oncogenic drivers in the plasma of healthy 
individuals. This has been attributed to a common aging-related phenomenon known 
as clonal haematopoiesis, in which haematopoietic stem cells or other early blood cell 
progenitors contribute to the formation of genetically distinct subpopulations of 
bloods cells[158]. The establishment of a clonal population may occur when a stem or 
progenitor cell acquires one or more somatic mutations that give it a competitive 
advantage over other haematopoietic cells. The incidence of clonal haematopoiesis 
rises with age and is an important consideration when evaluating potential blood-
based tumour-specific biomarkers.

Whilst these studies demonstrate the potential of cfDNA as an early detection 
marker, several significant obstacles need to be overcome before the majority could be 
used in a clinical setting. The main obstacles to the development of cfDNA based 
biomarkers are: (1) Low abundance of ctDNA in the blood; and (2) High levels of 
background non-cancerous cfDNA, mostly shed from WBCs. Highly sensitive 
technologies are required to accurately detect scarcely abundant alleles within high 
background levels of nontarget molecules.

Due to this, cfDNA-based cancer biomarkers have yet to make it into the clinical 
arena. The greatest progress has been observed in obstetric medicine, where cfDNA 
has been successfully used for fetal Rhesus D genotyping, for the detection of 
paternally inherited genetic disorders from maternal blood, and revolutionised the 
identification of fetal aneuploidy through non-invasive pre-natal screening[159]. In the 
future this level of success may be seen for cancer-specific cfDNA biomarkers.

CONCLUSION
The use of liquid biopsies is a fast-emerging area of cancer diagnostics, in particular 
the detection of ctDNA, and multiple cancer types are known to produce quantifiable 
levels of ctDNA. Studies have shown ctDNA to be useful in monitoring for minimal 
residual disease, treatment response, chemoresistance, and tumour heterogeneity. 
ctDNA can be used as an early warning diagnostic tool, either through identification 
of known genetic aberrations (such as TP53 mutations), or through measurement of 
cancer-specific DNA methylation (DNAme) of particular genomic loci. However, use 
of this technology for early diagnosis is very much in its infancy. In EOC it has been 
shown that TP53 mutations can be identified in ctDNA, using tagged amplicon deep 
sequencing, in up to 65% of patients with advanced EOC[160]. Once optimised this could 
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be a very useful liquid biopsy for HGSC but it would be important to ascertain the 
TP53 mutation rate in normal healthy controls as a baseline.

At present, sequencing technology allows for the detection of one mutant allele, e.g., 
p53, in a background of 1000 wild-type molecules[161]. For this reason, the current focus 
of our research is on DNAme because it allows for the detection of specific patterns 
rather than single point mutations, potentially improving the performance 
characteristics and detection limit of such an assay. There have been numerous reports 
of alterations in methylation events occurring in EOC, including HGSC[162-164]. This 
could prove to be an extremely useful mechanism through which HGSCs might be 
detected earlier and more consistently.

The identification of a biomarker requires a number of phases of development 
which can be crudely described as; case and control selection, determination of 
detection limits and assay precision, validation in second/external datasets, statistical 
interpretation and ROC analysis. The failure to find suitable biomarkers for EOC, 
despite significant investment in the United Kingdom, Europe and the United States, 
led to an inquiry into possible causes. This inquiry recommended the use of the PRoBE 
(prospective-specimen collection, with retrospective-blinded evaluation) design for 
biomarker discovery and validation because it was felt that biomarkers discovered in 
clinical sample sets collected at diagnosis from symptomatic patients and controls in 
hospital settings are unlikely to fully represent the screening population[165]. The 
PRoBE design involves blinded case-control studies nested within a prospective cohort 
representing the target population. The specimens and matched clinical data will have 
been collected prior to knowledge of the outcome (e.g., diagnosis of EOC). Paramount 
to the successful implementation of the PRoBE design is the knowledge of the accurate 
calibrator-control for the disease the biomarker is aimed for.

As discussed, the clinicopathological and molecular developments over the last 
decade has redefined EOC as essentially representing five distinct disease entities. It is 
now the time to consider identifying disease-specific biomarkers rather than a generic 
EOC tumour marker. This will likely yield more success and, ultimately, result in 
increased precision of the biomarker.

HGSC is the major contributor to morbidity and mortality under the EOC 
“umbrella”. Therefore, an accurate disease-specific biomarker is urgently needed; not 
just for “screening” but for greater diagnostic accuracy and also for monitoring disease 
stability/progression during treatment and assessing residual disease post 
cytoreductive surgery. Our use of cutting-edge, high throughput, molecular assay 
technologies has helped clarify the underlying molecular profile of this disease[86]. 
Knowledge like this will guide the identification and validation of novel transcripts 
that carry the potential to act as disease-specific biomarkers of HGSC.
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